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Abstract

In this paper three issues are pursued. First, a model of capacity constrained price competition is suggested.
The basic feature of this model is that a pure strategy equilibrium exists for all price subgames. Second, this
permits Cournot outcomes in heterogeneous markets to be interpreted as the unique subgame perfect
equilibrium of a two stage game where firms simultaneously set capacities first and then prices. Third, the
capacity constrained price competition game can be used to extend the entry deterrence models of the Dixit-
Stackelberg type in order to analyze the effect of heterogeneity and development of demand. The results
support the view that entry deterrence should be a rare event for growing dynamic markets with ample
opportunities of product differentiation.
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CAPACITY CONSTRAINED PRICE COMPETITION AND
ENTRY DETERRENCE IN HETEROGENEOUS PRODUCT

MARKETS

The contribution of Kreps and Scheinkman (1983) has given a significantly superior
foundation to the Cournot model. It can now be understood as a reduced form of a capacity
constrained price game with no need of some auctioneer. Unfortunately the price stage of
this game has only mixed strategy equilibria for a certain range of capacities. This is quite
annoying, if one wants to employ the model structure not only to simultaneous choices of
capacity but also in a sequential context of some sort as for example in contexts of entry
deterrence. In this paper we abandon the assumption of a homogeneous product market as
analyzed in Kreps and Scheinkman. This allows us to have pure strategy equilibria in the
price stage. In a setting with simultaneous capacity choices the unique equilibrium is again
identical to the Cournot outcome in a heterogeneous product market. Moreover the model
can be used to reconsider the possibility of entry deterrence in such a market. The
respective results support the view that a decreasing degree of substitutability among the
commodities under consideration hampers the possibility of profitable entry deterrence.
They are thus in line with the perspective that entry deterrence as modelled by e.g. Dixit
(1980) is expected to be a rare event.

Recently a related strand of literature emerged on capacity constrained price competition
which comes in two types of model setups. The distiguishing feature of these two types is
the view taken with respect to rationing. With capacity constraints rationing can occur and
give rise to strategic pricing opportunities as already noted by Edgeworth. The first type of
models stresses the importance of this possibilty. Work along this line includes Boccard &
Wauthy (1999a) and Yin, X. & Yew-Kwang Ng (1997)1. These authors assume that
consumers are fully aware of the capacities and take them into account when formulating
demand. In this form this implies a strong informational assumption on the part of
customers which appears unreasonable in many circumstances. Alternatively one could
view their approach as one where customers first formulate their unrestricted demand and
then visit firms sequentially. If the first firm visited is capacity constrained given their
demand they are rationed and will adjust the demand at the second firm. If this is the

                                                          
1 It should be mentioned at this point that there is a gap in the proof contained in that paper. This is
elaborated in Schulz (1999).
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underlying story it is assumed implicitly that going from one firm to the other is costless.
One may object that such costs can be taken into account when formulating unrestricted
demand. This is certainly true if customers are not rationed by capacities. If they are
rationed a customer may visit a firm first where capacities do not bind. When she finds that
she is rationed at the second firm she has to go back to the first firm because her demand
for the first firm’s commodity will have changed because of rationing at the second firm.
Therefore there will typically be additional transactions costs if customers are not aware of
capacity constraints. Either one must assume that such costs are negligible or some
expectation of rationing must be formed. To be sure the assumption of zero transactions
costs of this kind has a long tradition in economics for good reasons. Therefore the
preceding comments are not intended to criticize these authors in this respect. They are
rather intended to prepare the ground for the view that is taken in this paper which is in
line with the second type of model setup.

In the present paper the view is taken that it is reasonable to assume that customers do not
have full knowledge of the firms capacities. Indeed it is assumed that customers expect that
their demands are met when formulating their demand. This expectation will never be
falsified in equilibrium. The demand structure can be understood as resulting from a
discrete choice situation. Customers have an outside option yielding some reservation
utility level. They know the prices and products on offer because of advertising or other
easily available information. They buy one and only one unit from one of the firms or stick
to their outside option. The increase in utility when buying a unit from one of the firms
rather than using their outside option covers only the cost to visit one firm. Suppose for
example there is an offer of some commodity which is locally available (the outside
option) but there are also the offers from the two firms at least one of which is a better deal
than the outside option. The two firms are located far apart such that because of e.g. time
constraints only the firm with the better deal is worthwhile visiting. Then the demand
system used in the present paper can be seen as the aggregate demand facing the two firms.
For example utility functions of the type xq and some uniform distribution of income can
generate such a system. Here x denotes the quantity of numeraire consumption and q
denotes the perceived quality of the commodity under consideration. Such formulation of
utility functions are common in models of vertical product differentiation (e.g. Shaked and
Sutton (1982)). The proof that such a discrete choice model can generate the demand
system presented in the next section is available on request from the author. It is not
included here because it is quite obvious.
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To relate this view to the one in the first type of model setup the two distinguishing
assumptions in this paper are: Customers do not know the capacities of the firms and they
incur substantial costs when visiting one firm, while visiting two is prohibitive. Such a
setup seems as reasonable as assuming that there are no transactions costs at all. It implies
that demand decisions are not revised if rationing occurs. A rationed customer at one firm
does not transfer his demand to the competitor but rather sticks to his outside option. This
excludes the possibility that a firm can set a high price in order to profit from the
competitor’s capacity constraint.

In the framework used here customers never face rationing, as the firms always set prices
which render demand compatible with their capacities. Indeed firms never have an
incentive to set a price which is so low as to generate more demand than available capacity
permits. This would only decrease their revenue per unit without being able to recoup that
loss through increased sales which are after all restricted by available capacities. Thus a
belief on the side of consumers of never facing a rationing constraint and the belief on the
side of firms that consumers are not aware of potential capacity constraints is never
falsified in this game. Both expectations are mutually consistent and have a flavor of self
fullfilling prophecies. It therefore is compatible with rational behavior. The assumption of
heterogeneous products together with the lacking incentive to generate demand exceeding
capacity has obviously the additional advantage of being able to avoid any more or less ad
hoc specification of some rationing scheme as criticized e.g. by Davidson and Deneckere
(1986).

In this way we follow the second type of model setup which is also used in e.g Boccard &
Wauthy (1999b) or Maggi (1996). In these papers it is just assumed that prices are adjusted
in such a way that rationing is avoided. The above remarks give a justification for such an
assumption.

The paper is organized as follows. The next section presents the model and the analysis of
the price stage subgames. The following section considers simultaneous choices of
capacities and presents the Cournot outcomes. Then we reconsider the possibilites of first
mover advandages of an incumbent including the possibility of entry deterrence in a
fashion similar to Dixit's classical analysis.
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The model and the price stage2

Consumer demand is modelled in a linear symmetric way. The system of inverse demand
is given by ( 0 ≤ θ < 1 ):

p a x x1 1 2= − − θ

p a x x2 2 1= − − θ

Equivalently the demand system is given by

x a p p
1

1
2

2
21 1 1

=
+

−
−

+
−θ θ
θ
θ

x a p p
2

2
2

1
21 1 1

=
+

−
−

+
−θ θ
θ
θ

.

In this stage the capacities of the two firms are given by K1, K2. Variable production costs
are assumed to be linear. As is well known we do not loose generality by setting these
marginal costs equal to zero. Firms are supposed to maximize profit under their capacity
constraint:

max . .p a p p
s t a p p
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This modelling approach implies that customers are not aware of potential capacity
constraints and that firms do not consider the possibility that a high price may render their
competitor’s capacity constraint binding which could then change the demand for their
own commodities. I will comment on this assumption at the end of this section.

Consider first capacities that are not binding for both firms. In this case the best response
functions are

p p
a p

i
B

j
j( )

( )
=

− +1
2

θ θ

and the equilibrium prices are the usual (Bertrand) prices for heterogeneous markets:

p ai
B =

−
−

1
2

θ
θ

                                                          
2 After the first draft was written the author became aware of the fact that Stephen Martin (1999)
simultaneously developped an almost identical analysis as contained in this section.
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Inserting these values into the demand functions yields

x p p a
i i

B
j
B( , )

( )( )
=

+ −1 2θ θ
.

As the profit functions are concave in pi the Bertrand prices are equilibrium prices for

min( , )
( )( )

K K a
1 2 1 2

≥
+ −θ θ

.

Let us consider now the general case. The capacity constraint can be rewritten as

)()1()1( 2
ij

K
ijii ,Kp:pθpKθaθp =+−−−≥ .

It is straightforward to verify that the best response functions - taking the capacity
constraint into account - is

p p K p p p p Ki j i i
B

j i
K

j i( , ) max( ( ), ( , ))= .

Apparently these best response functions are continuous. From the representation of pi
B

and pi
K it is obvious that a > pi ( pj, Ki ) ≥ (1 - θ) a/2. Hence Brouwer's fixed point theorem

guarantees the existence of a pure strategy equilibrium in these subgames. By inspection of
pi

B and pi
K the slope of the best response function of firm 2 is strictly less than the slope for

the best response function of firm 1 for any θ < 1. This implies that this equilibrium is
unique. Indeed the result that there exists a unique equilibrium is already contained in
Maggi (1996). The above arguments are included here because they facilitate the following
analysis.

The rest of this section provides a closed form solution for the unique price equilibria of
the subgames characterized by different capacity choices. To this purpose consider first the
case K1 = K2 = K. For K ≥ a /((1+θ)(2-θ)), we have the Bertrand equilibrium pi

B set out
above. For the K < a /((1+θ)(2-θ)), we have equilibrium prices p = a - K - θK, as is easily
verified.

Let us turn now to the case K1 < K2. If K1 ≥ a /((1+θ)(2-θ)) both capacities are large
enough to have an intersection point in the pi

B - part of both best response functions. Hence
equilibrium coincides again with the Bertrand solution pi

B . The interesting case is thus K1

< a /((1+θ)(2-θ)). This implies that the intersection point of both best response functions is
on capacity constrained part of firm 1's function. It remains to be clarified, whether the
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intersection point is on the capacity constrained part of firm 2 or on its unconstrained part.
For this purpose it is easiest to use a geometric argument. In the following figure both
response functions are exihibited. If K2 is large enough the solid line represents a best
response function of firm 2 such that the intersection point is on its unconstrained part. For
smaller choices of K2 the dashed line is part of the best response function of firm 2. In the
exhibited case, the intersection point is on the capacity constrained part. This yields a
simple characterization of the cases with an intersection point an the constrained part: If
the intersection point of p1

K with p2
K is above the intersection point of p1

K with p2
B, than

the intersection point of the best response functions is on the constrained part of p2.
Otherwise it is on the unconstrained part.

best response function
       of firm 2                        best response function
                                                     of firm 1

It is straightforward to calculate the two intersection points of interest. The intersection of
p1

K with p2
K is

p K K a K K1 1 2 1 2( , ) = − − θ
p K K a K K2 1 2 2 1( , ) = − − θ .

The intersection point of p1
K with p2

B is

p K K a K
1 1 2

2
1

2
2 1 2 1

2
( , ) ( )( ) ( )

=
+ − − −

−
θ θ θ

θ

p K K a K
2 1 2

2 2
1

2
1 1

2
( , ) ( ) ( )

=
− − −

−
θ θ θ

θ
.

Hence the first intersection point is relevant iff

a K K a K
− − ≥

− − −
−2 1

2 2
1

2
1 1

2
θ

θ θ θ
θ

( ) ( ) ,

which is equivalent to
a K K≥ − +( )2 2

2 1θ θ .

Putting these pieces together for K1 ≤ K2, we have the following price equilibria:
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If

(I) a K K≥ − +( )2 2
2 1θ θ  and K a

1 1 2
≤

+ −( )( )θ θ

the equilibrium is
p K K a K K1 1 2 1 2( , ) = − − θ
p K K a K K2 1 2 2 1( , ) = − − θ .

If

(II) a K K≤ − +( )2 2
2 1θ θ  and K a

1 1 2
≤

+ −( )( )θ θ

the equilibrium is

p K K a K
1 1 2

2
1

2
2 1 2 1

2
( , ) ( )( ) ( )

=
+ − − −

−
θ θ θ

θ

p K K a K
2 1 2

2 2
1

2
1 1

2
( , ) ( ) ( )

=
− − −

−
θ θ θ

θ
.

If

(IV) K a
1 1 2
≥

+ −( )( )θ θ
 and K a

2 1 2
≥

+ −( )( )θ θ

the equilibrium is

p ai
B =

−
−

1
2

θ
θ

, i = 1, 2.

The case K1 ≥ K2 is analogous. The type of equilibrium can be summarized conveniently in
the following figure:

       K2

                   II                   IV
a

2 2− θ
                    I
                                                  III

                    

a
( )( )1 2+ −θ θ                       

a
θ       K1
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For further reference we note here the resulting profits. In case I, we have the following
profits:

Π1 1 2 1 2 1
I K K a K K K( , ) ( )= − − θ

Π2 1 2 2 1 2
I K K a K K K( , ) ( )= − − θ .

In case II, we have the following profits:

Π1 1 2

2
1

2 1
2 1 2 1

2
II K K a K K( , ) ( )( ) ( )

=
+ − − −

−
θ θ θ

θ

Π2 1 2

2 2
1

2
1

2
1 1

2 2
II K K a K a K( , ) ( ) ( )

=
− − −

−
−
−

θ θ θ
θ

θ
θ

In case III, which is case II with the roles of firms 1 and 2 exchanged, we have analogous
profits and for case IV, we have the following profits:

Πi
IV K K a( , )

( )( )1 2 2
21

1 2
=

−
+ −

θ
θ θ

 for i = 1, 2.

This concludes the determination of the equilibria of all subgames.

The following sections are devoted to the capacity choices. First the simultaneous choice is
considered and the Cournot outcome generated. Then a form of sequential choices of
capacities is analysed.

Cournot outcomes

Considering the choice of capacity we assume that capacity costs are linear with marginal
costs equal to r. The profit functions relevant for this context are

Π i
k

iK K rK( , )1 2 − , i = 1, 2, k = I, II, III, IV,

where the Πi are those derived in the preceeding section. Let us first consider the best
response functions of firm 1. If we analyze the profit function in each of cases I to IV
separately, it becomes apparent by inspection of Πi that the global maxima within areas III
and IV are at the left boundary of these areas. In case I, it is straightforward to verify that
within this area the best response function is

K K a r K a K
1 2

2
2

20
2

2( ) max ,min , ( )
=

− − − −⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

θ θ
θ

,
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where the second expression in the min-term reflects the upper boundary line of case I.
This implies that no pair ( K1, K2 ) in the area of case III is part of the best response
function. For further reference it should be noted that both expressions in the paranthesis
above coincide at

K a r
1

2

2 2
2 1 2

4 1
=

+ − − −
− +

( )( ) ( )
( )

θ θ θ
θ θ

,

which is always strictly less than a/((1+θ)(2-θ)). It is obviously positive for

a
r
>

−
+ −
2

2 1

2θ
θ θ( )( )

.

For θ close to 1 this inequality cannot hold. Hence in this case the best response function
in the area of I is

K K
a r K

1 2
20

2
( ) max ,=

− −⎛
⎝⎜

⎞
⎠⎟

θ
.

Finally we have to study the profit maxima in the area of case II. Maximizing the relevant
profit function gives

K K a r
1 2

2

20 2 1 2
4 1

( ) max , ( )( ) ( )
( )

=
+ − − −

−

⎛

⎝
⎜

⎞

⎠
⎟

θ θ θ
θ

.

This expression is always strictly less than a/((1+θ)(2-θ)). Hence no pair ( K1, K2 ) in the
area of case IV is part of the best response function.

Putting this information together we have the best response function

K K
a r K

1 2
20

2
( ) max ,=

− −⎛
⎝⎜

⎞
⎠⎟

θ
,

if
a
r
≤

−
+ −
2

2 1

2θ
θ θ( )( )

.

If this inequality does not hold, the best response function jumps approximately at the
boundary line between the areas relevant for cases I and II. More precisely, there exists a
$K2  in the nondegenerate interval
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( )
( )

, ( )
( )

1
2 1

2
4 12 2 2

− +
−

− +
− +

⎛
⎝
⎜

⎞
⎠
⎟

θ θ
θ

θ θ
θ θ

a r a r ,

such that

K K a r K
1 2

2

2
( ) = − − θ  for K2 ≤ $K2

K K a r
1 2

2

20 2 1 2
4 1

( ) max , ( )( ) ( )
( )

=
+ − − −

−

⎛

⎝
⎜

⎞

⎠
⎟

θ θ θ
θ

 for K2 ≥ $K2 .

This jump indicates that a proof of existence might be difficult, if more general demand
systems or cost structures are analyzed. In particular it is not sufficient to note that the
areas where some capacities are not fully employed (here cases II, III, and IV) are not
relevant for an equilibrium outcome and then to proceed by studying exclusively those
parts of best response functions which are relevant for fully employed capacities. This is of
course sufficient to characterize an equilibrium outcome but it provides no proof of
existence. In the present linear context the jump does not pose any problems. From the
arguments above it can easily be verified that the best response functions have a unique
intersection point at the usual Cournot outcomes which in turn are such that the potential
jump of the best response functions do not matter. Summarizing:

Proposition 1: In a model with linear demand and costs and a two stage game, where two
identical firms simultaneously set capacities first and then prices as set out in the first
section, the unique subgame perfect equilibrium generates the Cournot outcome for
heterogeneous products:

K a r
i =

−
+2 θ

, i = 1, 2.

Sequential capacity choice and entry deterrence

The fact that all price subgames have pure strategy equlibria makes it possible to easily
extend the usual analysis of entry deterrence to heterogeneous markets. As indicated in the
introduction our focus will be on the facilitating or hampering factors for entry deterrence
due to increased heterogeneity in the product market. A natural starting point is therefore
the case of homogeneous products. We will thus concentrate on values of θ close to 1. This
implies that we do not have to bother about discontinuous best response functions.
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We consider a three stage game. In the first stage an incumbent can choose a capacity
which is assumed to be associated with fully sunk costs and free of detoriation. In addition
she can choose a price. In the second stage another firm may enter the market. If this
happens both firms simultaneously choose their capacities. The incumbent cannot decrease
her capacity below the level chosen in the first stage. The third stage consists in the
capacity constrained price game of both firms. We consider the subgame perfect
equilibrium of this game.

For the third stage nothing remains to be analyzed as for all capacity choices the first
section contains all price equlibria. As for the second stage the resulting best response
function of the entering firm are those analyzed in the preceeding section. For the analysis
of the best response function of the imcumbent firm in the second stage denote the capacity
chosen by the incumbent in the first stage by K1

I. Obviously the incumbent's best response
function in the second stage is

K K K K a r KI I E I
E

2 1 1 2
( , ) max ,=

− −⎛

⎝
⎜

⎞

⎠
⎟

θ .

From this the unique equlibrium of the second stage follows immediately:

For K1
I < (a - r)/(2+θ) the equilibrium is

K a r K KI E I
2 12
=

−
+

= >
θ

 and the incumbent's profit in this stage is

Π2 1

2

12
I I IK a r rK( ) = −

+
⎛
⎝⎜

⎞
⎠⎟

+
θ

.

For (a - r)/(2+θ) ≤ K1
I < (a - r)/θ the equilibrium is

K K K a r KI I E
I

2 1
1

2
= =

− −, θ  and the incumbent's profit in this stage is

( )Π2 1
2

1 1
1
2

2 2I I I IK a r K K( ) ( ) ( )= − + − −θ θ θ .

For (a - r)/θ ≤ K1
I the equilibrium is
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K K KI I E
2 1 0= =,   and the incumbent's profit in this stage is

Π2 1 1 1
I I I IK a K K( ) ( )= − .

This sets the stage for the analysis of the first period. In this stage we assume, that demand
may be smaller than in the following stages. We model this by considering a profit
function of the following type:

Π Π1 1 2 1 1
I I I I IK p p a p K rK( , ) ( ) ( )= − + −τ

Here p denotes the price of the incumbent charged in the first stage. τ is a number between
0 and 1. If τ is smaller than 1 this models a growing market. If τ is equal to 1, we have a
stagnating market and as will become clear later on this case gives also the relevant
information for declining markets. In the following we will concentrate on the extreme
cases τ = 0 and  τ = 1. The equilibrium of the first stage is determined by maximizing this
profit function under the constraint τ ( a - p) ≤ K1

I.

To determine the global maximum of this function recall that Π1
I has no single analytical

representation. Rather - as exhibited above - there are three cases to consider : (a) K1
I <

(a - r)/(2+θ), (b) (a - r)/(2+θ) ≤ K1
I < (a - r)/θ, and (c) (a - r)/θ ≤ K1

I.

In case (a) K1
I = (a - r)/(2+θ) is always a global maximum within the reach of this case. If

demand at the sales maxizing price a/2 exceeds the largest capacity of this case
(a - r)/(2+θ), the profit function has a unique global maximum at this largest capacity. This
is obviously the case with τ = 1. Otherwise the profit function will be constant between the
demand at a/2 and the upper boundary of this case. Hence for τ = 0, the profit function is
constant in capacities.

In case (b) note first that the optimal capacity is always larger than (a - r)/(2+θ). Therefore
case (a) can be deleted from further consideration. It is a tedious exercise to check that the
optimal capacity is nondecreasing in τ. This is also very plausible: If τ increases, cost can
be spread over an increased volume of sales, giving an incentive to increase capacity. For
τ = 0, the optimal capacity (within this case)  turns out be

K a rI
1 2

2
2 2

=
−
−

−
θ
θ( )

( )

which is larger than (a - r)/(2+θ). It is also smaller than (a - r)/θ. Hence for all parameter
constellations the profit maximizing capacity is at least as large as this capacity.
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For τ = 1 the optimal capacity (again within this case) is

K a rI
1 2

4 2
2 4

=
− − −

−
( ) ( )

( )
θ θ

θ
.

This expression is smaller than the upper boundary of this case (a - r)/θ iff

( )( )8 4 2 02− − − − >θ θ θa r r .

The left hand side decreases in θ. For θ = 1 this condition reads 3a > 5r. Hence for
sufficiently profitable markets there is always an interior optimal capacity for case (b).
Otherwise (3a < 5r) the optimal capacity will be at (a - r)/θ (where KE becomes zero) for
sufficiently large θ.

Finally, we have to consider case (c). Not surprizingly, the optimal capacity is
nondecreasing in τ. All questions of interest can therefore be restricted to the two extreme
values of τ. For τ = 0 the lower boundary of the case is the unique optimal capacity of case
(c). For τ = 1, the first order conditions for profit maximization (ignoring the bounds of the
case) yield

K a rI
1

2
4

=
− .

This is larger than (a - r)/θ iff

( )( )8 4 2 0− − − <θ θa r r .

From this definition we can deduce the following reults:

Proposition 2: For τ = 0, the subgame perfect capacity is K a rI
1 2

2
2 2

=
−
−

−
θ
θ( )

( ) .

This conforms with the standard result for homogeneous markets and the Dixit-Stackelberg
solution. As in the standard results, entry deterrence is not profitable without some fixed
costs on the part of the entrant. We return to this issue in a moment.

Proposition 3: For τ = 1, the subgame perfect capacity is

(i)  K a rI
1 2

4 2
2 4

=
− − −

−
( ) ( )

( )
θ θ

θ
 for a r

r
−

>
− −

2
8 4 2

θ
θ θ
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(ii)  K a rI
1 =

−
θ

         for 2
8 4

2
8 4 2

θ
θ

θ
θ θ−

≤
−

≤
− −

a r
r

(iii)    K a rI
1

2
4

=
−         for a r

r
−

<
−
2

8 4
θ
θ

.

Note that case (i) obtains for θ = 1 and a > 5r/3. This case reflects accomodated entry. As
argued above, if this case is relevant for some θ then it is relevant for all smaller θ. In other
words: if entry is accomodated for some degree of substitutability then it is accomodated
as well for any smaller degree of substitutabiliy.

Case (iii) is only feasible, if a < 3r/2. This case reflects blockaded entry. The respective
capacity is the one which would be chosen, if the incumbent were not threatened by entry.
In line with conventional wisdom a lower degree of substitutablity makes blockaded entry
less likely.

Case (ii) reflects deterred entry. An unchallenged incumbent would install a smaller
capacity. But this would invite entry. Here again, it is clear from studying the boundaries
of the case that entry deterrence is less likely for lower values of substitutability. The
picture is thus very clear. The lower the degree of substitutability the more costly is entry
deterrence. This has two parts: a lower degree of substitutability enhances the profitability
of the market, if entry is permitted. And at the same time it takes a larger capacity to deter
entry. This reduces the incentive for entry deterrence.

Note again that for the case τ = 1 we did not assume any fixed costs to make entry
deterrence profitable. Comparing with the case τ = 0, where entry deterrence is never
profitable without fixed costs, leads us to conclude that entry deterrence is easier for τ = 1.
Morever the monotonic dependence of the optimal capacity on the value of τ suggests that
entry deterrence is easier with a high value of τ. As τ smaller than 1 represents growing
markets while τ larger than 1 represents declining markets, we have here another
supporting argument for the common view that entry deterrence is quite difficult in
growing markets but easier in stagnating or declining markets.

As a final point let us consider fixed costs as usually introduced in order to study entry
deterrence. In homogeneous markets the most frequently model uses τ = 0. Therefore we
concentrate on this case. Are any of our findings above modified significantly by this
possibility? To summarize the following arguments: the answer is no. Again lower degrees
of substitutabiliy renders entry deterrence less likely for the same reasons as above:
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Lemma 1: For τ = 0 the profit at accomodated entry is

1
8

2
2

2

2
2( ) ( )−

−
−

θ
θ

a r

and this expression decreases in θ.

In other words the more homogeneous the products the less attractive is entry
accomodation.

Lemma 2: For τ = 0 and some fixed costs of the entrant F, the profit at the entry deterring
capacity is

( )( )a r F F a r− − − − − −2 2 1 2( )( )θ θ .

and this expression increases in θ if a r F− > 4 .

The inequality at the end of the lemma reflects the case that entry is not blockaded for
homogeneous markets. Taking these two lemmata together we have the announced result:
The incentive to deter entry decreases when the degree of subsitutability becomes lower.

Summarizing the results of this section: The classical Dixit-Stackelberg treatment of
sequential capacity choice can easily be extended to the context of heterogeneous markets
in the context of a capacity constrained price game. The results support the intuition that
entry is more difficult to deter in growing and heteregeneous markets. An entrant into a
growing market can evade entry deterring measures if she can offer a sufficiently different
product. This also supports the view that entry deterrence in the sense of this model can be
expected to be a rare event.

Concluding remarks

In this paper three issues have been pursued. First a model of capacity constrained price
competition was suggested. The basic feature of this model is that a pure strategy
equilibrium exists for all price subgames as analyzed in the first section. As the following
section has revealed this permits Cournot outcomes in heterogeneous markets to be
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interpreted as the unique subgame perfect equilibrium of a two stage game where firms
simultaneously set capacities first and then prices. Thirdly, the capacity constrained price
competition game can be used to extend the entry deterrence models of the Dixit-
Stackelberg type.
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