piwik-script

Intern
    Lehrstuhl für BWL und Wirtschaftsinformatik - Prof. Dr. A. Winkelmann

    DeepScan - Maschinelles Lernen zur automatisierten Erkennung von IKT-Sicherheitsvorfällen und Manipulationsversuchen

    Unternehmen, darunter aktuell auch verstärkt kleine und mittlere Unternehmen (KMU), bilden ihre Geschäftsprozesse seit einigen Jahren zunehmend vollständig in betriebswirtschaftlicher Software, insbesondere sogenannten Enterprise-Resource-Planning-(ERP-)-Systemen, ab. Durch die kontinuierliche Speicherung sämtlicher Geschäftsvorfälle in den ERP-Systemen werden tagtäglich sehr große Datenmengen innerhalb eines Unternehmens erzeugt und verändert. Auf Basis dieser Daten werden dann in der realen Welt z. B. zu Beschaffungs-, Verkaufs- oder Produktionsprozesse ausgeführt, ohne dass notwendigerweise eine Rücksprache zwischen dem Datenersteller, etwa der Vertriebsabteilung, und beispielsweise dem Produktionsmitarbeiter, erfolgt. Die Datenerzeugung und auch -nutzung führt dabei zu großen Risiken bei unrechtmäßigem Gebrauch dieser Daten.

    Mit bisherigen, statischen Methoden oder sogar manuell können diese Daten keinesfalls nach Anomalien, also Indikatoren für eine böswillige Manipulation, durchsucht werden. Typischerweise taucht daher das Resultat der Manipulation des ERP-Systems zunächst einige Stunden oder Tage später in der Real-Welt auf und lässt sich dann – zu spät – mit einigem Aufwand auch im ERP-System nachweisen. Ein Aufdecken von Manipulationen in Echtzeit ist derzeit in keiner ERP-Software möglich. Zu diesem Zweck wird in diesem Projekt eine Lösung entwickelt, welche ERP-Systeme auf sicherheitsrelevantes, anomales Verhalten von Mitarbeitern oder Angriffe von außerhalb des Unternehmens kontinuierlich und automatisiert untersucht und dabei in rechtskonformer Weise auf die jeweils erforderlichen Analysen beschränkt ist. Da bei diesen Vorgängen potentiell eine große Menge an unternehmensinternen und personenbezogenen Daten analysiert und verarbeitet wird, ist es zwingend erforderlich, das Projekt datenschutzrechtlich zu begleiten. Dies wird durch entsprechende Experten im Projektkonsortium sichergestellt.

    Die Scanning-Architektur besteht aus einer Künstlichen Intelligenz in Form einer „Machine Learning Toolbox“, die es erlauben soll, häufige Anomalien und Missbrauchsmuster zu erkennen. Dazu werden im Projekt DeepScan zu Beginn die zur Verfügung stehenden Daten aus unterschiedlichen Anwendungssystemen analysiert, potentielle Missbrauchsfälle definiert und die Künstliche Intelligenz mit diesen Demodaten trainiert. Diese Künstliche Intelligenz kann im Anschluss beispielsweise als zusätzliche Anwendung in bestehende ERP-Systeme integrierte oder als externe Zusatzlösung angeboten werden und somit eine große Verbreitung am Markt finden. Ziel der Verwertung ist es, dass eine Plattform geschaffen wird, in der zahlreiche Daten von unterschiedlichen Unternehmen zusammenfließen, um die Künstliche Intelligenz permanent zu verbessern. Auf diese Weise ist sichergestellt, dass Unternehmen auch zukünftig vor Manipulationsversuchen geschützt sind.

    Das Bundesministerium Bundesministerium für Bildung und Forschung unterstützt das Vorhaben im Rahmen der Richtlinie zur Förderung von Forschungsvorhaben zur automatisierten Analyse von Daten mittels Maschinellen Lernens im Rahmen des Förderprogramms „IKT 2020 – Forschung für Innovationen“ des Bundesministeriums für Bildung und Forschung.


    Beteiligte Projektpartner: Universität Würzburg - Lehrstuhl für Betriebswirtschaftslehre und Wirtschaftsinformatik und Systementwicklung & Lehrstuhl für Informatik VI – DMIR Research Group, TGS Audit & Tax GmbH, datenschutz süd GmbH, godesys AG.

    Die neuesten Informationen zum Projekt finden Sie auf www.projekt-deepscan.de

    Schema der Machine Learning Toolbox des Projekts DeepScan

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Facebook weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Twitter weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Kontakt

    Lehrstuhl für Betriebswirtschaftslehre und Wirtschaftsinformatik
    (Eingang Ebracher Gasse) 4
    Paradeplatz 4
    97070 Würzburg

    Tel.: +49 931 31-80501
    Fax: +49 931 31-80680
    E-Mail

    Suche Ansprechpartner

    Josef-Stangl-Platz 2
    Josef-Stangl-Platz 2